Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Heterozygosity, gender, and the growth-defense trade-off in quaking aspen.

Identifieur interne : 001835 ( Main/Exploration ); précédent : 001834; suivant : 001836

Heterozygosity, gender, and the growth-defense trade-off in quaking aspen.

Auteurs : Christopher T. Cole [États-Unis] ; Michael T. Stevens [États-Unis] ; Jon E. Anderson [États-Unis] ; Richard L. Lindroth [États-Unis]

Source :

RBID : pubmed:26886130

Descripteurs français

English descriptors

Abstract

Although plant growth is generally recognized to be influenced by allocation to defense, genetic background (e.g., inbreeding), and gender, rarely have those factors been addressed collectively. In quaking aspen (Populus tremuloides Michx.), phenolic glycosides (PGs) and condensed tannins (CTs) constitute up to 30 % of leaf dry weight. To quantify the allocation cost of this chemical defense, we measured growth, defense chemistry, and individual heterozygosity (H obs at 16 microsatellite loci) for male and female trees in both controlled and natural environments. The controlled environment consisted of 12 juvenile genets grown for 3 years in a common garden, with replication. The natural environment consisted of 51 mature genets in wild populations, from which we sampled multiple ramets (trees) per genet. Concentrations of PGs and CTs were negatively correlated. PGs were uncorrelated with growth, but CT production represented a major cost. Across the range of CT levels found in wild-grown trees, growth rates varied by 2.6-fold, such that a 10 % increase in CT concentration occurred with a 38.5 % decrease in growth. H obs had a marked effect on aspen growth: for wild trees, a 10 % increase in H obs corresponded to a 12.5 % increase in growth. In wild trees, this CT effect was significant only in females, in which reproduction seems to exacerbate the cost of defense, while the H obs effect was significant only in males. Despite the lower growth rate of low-H obs trees, their higher CT levels may improve survival, which could account for the deficit of heterozygotes repeatedly found in natural aspen populations.

DOI: 10.1007/s00442-016-3577-6
PubMed: 26886130


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Heterozygosity, gender, and the growth-defense trade-off in quaking aspen.</title>
<author>
<name sortKey="Cole, Christopher T" sort="Cole, Christopher T" uniqKey="Cole C" first="Christopher T" last="Cole">Christopher T. Cole</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Science and Mathematics, University of Minnesota, Morris, 600 E. 4th St., Morris, MN, 56267, USA. colect@morris.umn.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Science and Mathematics, University of Minnesota, Morris, 600 E. 4th St., Morris, MN, 56267</wicri:regionArea>
<wicri:noRegion>56267</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Stevens, Michael T" sort="Stevens, Michael T" uniqKey="Stevens M" first="Michael T" last="Stevens">Michael T. Stevens</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Utah Valley University, Orem, UT, 84058, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Utah Valley University, Orem, UT, 84058</wicri:regionArea>
<wicri:noRegion>84058</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Anderson, Jon E" sort="Anderson, Jon E" uniqKey="Anderson J" first="Jon E" last="Anderson">Jon E. Anderson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Science and Mathematics, University of Minnesota, Morris, 600 E. 4th St., Morris, MN, 56267, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Science and Mathematics, University of Minnesota, Morris, 600 E. 4th St., Morris, MN, 56267</wicri:regionArea>
<wicri:noRegion>56267</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lindroth, Richard L" sort="Lindroth, Richard L" uniqKey="Lindroth R" first="Richard L" last="Lindroth">Richard L. Lindroth</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706</wicri:regionArea>
<wicri:noRegion>53706</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26886130</idno>
<idno type="pmid">26886130</idno>
<idno type="doi">10.1007/s00442-016-3577-6</idno>
<idno type="wicri:Area/Main/Corpus">001916</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001916</idno>
<idno type="wicri:Area/Main/Curation">001916</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001916</idno>
<idno type="wicri:Area/Main/Exploration">001916</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Heterozygosity, gender, and the growth-defense trade-off in quaking aspen.</title>
<author>
<name sortKey="Cole, Christopher T" sort="Cole, Christopher T" uniqKey="Cole C" first="Christopher T" last="Cole">Christopher T. Cole</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Science and Mathematics, University of Minnesota, Morris, 600 E. 4th St., Morris, MN, 56267, USA. colect@morris.umn.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Science and Mathematics, University of Minnesota, Morris, 600 E. 4th St., Morris, MN, 56267</wicri:regionArea>
<wicri:noRegion>56267</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Stevens, Michael T" sort="Stevens, Michael T" uniqKey="Stevens M" first="Michael T" last="Stevens">Michael T. Stevens</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Utah Valley University, Orem, UT, 84058, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Utah Valley University, Orem, UT, 84058</wicri:regionArea>
<wicri:noRegion>84058</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Anderson, Jon E" sort="Anderson, Jon E" uniqKey="Anderson J" first="Jon E" last="Anderson">Jon E. Anderson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Science and Mathematics, University of Minnesota, Morris, 600 E. 4th St., Morris, MN, 56267, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Science and Mathematics, University of Minnesota, Morris, 600 E. 4th St., Morris, MN, 56267</wicri:regionArea>
<wicri:noRegion>56267</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lindroth, Richard L" sort="Lindroth, Richard L" uniqKey="Lindroth R" first="Richard L" last="Lindroth">Richard L. Lindroth</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706</wicri:regionArea>
<wicri:noRegion>53706</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Oecologia</title>
<idno type="eISSN">1432-1939</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Environment (MeSH)</term>
<term>Heterozygote (MeSH)</term>
<term>Plant Leaves (MeSH)</term>
<term>Populus (genetics)</term>
<term>Trees (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arbres (MeSH)</term>
<term>Environnement (MeSH)</term>
<term>Feuilles de plante (MeSH)</term>
<term>Hétérozygote (MeSH)</term>
<term>Populus (génétique)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Environment</term>
<term>Heterozygote</term>
<term>Plant Leaves</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Arbres</term>
<term>Environnement</term>
<term>Feuilles de plante</term>
<term>Hétérozygote</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Although plant growth is generally recognized to be influenced by allocation to defense, genetic background (e.g., inbreeding), and gender, rarely have those factors been addressed collectively. In quaking aspen (Populus tremuloides Michx.), phenolic glycosides (PGs) and condensed tannins (CTs) constitute up to 30 % of leaf dry weight. To quantify the allocation cost of this chemical defense, we measured growth, defense chemistry, and individual heterozygosity (H obs at 16 microsatellite loci) for male and female trees in both controlled and natural environments. The controlled environment consisted of 12 juvenile genets grown for 3 years in a common garden, with replication. The natural environment consisted of 51 mature genets in wild populations, from which we sampled multiple ramets (trees) per genet. Concentrations of PGs and CTs were negatively correlated. PGs were uncorrelated with growth, but CT production represented a major cost. Across the range of CT levels found in wild-grown trees, growth rates varied by 2.6-fold, such that a 10 % increase in CT concentration occurred with a 38.5 % decrease in growth. H obs had a marked effect on aspen growth: for wild trees, a 10 % increase in H obs corresponded to a 12.5 % increase in growth. In wild trees, this CT effect was significant only in females, in which reproduction seems to exacerbate the cost of defense, while the H obs effect was significant only in males. Despite the lower growth rate of low-H obs trees, their higher CT levels may improve survival, which could account for the deficit of heterozygotes repeatedly found in natural aspen populations.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26886130</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>05</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1939</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>181</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2016</Year>
<Month>06</Month>
</PubDate>
</JournalIssue>
<Title>Oecologia</Title>
<ISOAbbreviation>Oecologia</ISOAbbreviation>
</Journal>
<ArticleTitle>Heterozygosity, gender, and the growth-defense trade-off in quaking aspen.</ArticleTitle>
<Pagination>
<MedlinePgn>381-90</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00442-016-3577-6</ELocationID>
<Abstract>
<AbstractText>Although plant growth is generally recognized to be influenced by allocation to defense, genetic background (e.g., inbreeding), and gender, rarely have those factors been addressed collectively. In quaking aspen (Populus tremuloides Michx.), phenolic glycosides (PGs) and condensed tannins (CTs) constitute up to 30 % of leaf dry weight. To quantify the allocation cost of this chemical defense, we measured growth, defense chemistry, and individual heterozygosity (H obs at 16 microsatellite loci) for male and female trees in both controlled and natural environments. The controlled environment consisted of 12 juvenile genets grown for 3 years in a common garden, with replication. The natural environment consisted of 51 mature genets in wild populations, from which we sampled multiple ramets (trees) per genet. Concentrations of PGs and CTs were negatively correlated. PGs were uncorrelated with growth, but CT production represented a major cost. Across the range of CT levels found in wild-grown trees, growth rates varied by 2.6-fold, such that a 10 % increase in CT concentration occurred with a 38.5 % decrease in growth. H obs had a marked effect on aspen growth: for wild trees, a 10 % increase in H obs corresponded to a 12.5 % increase in growth. In wild trees, this CT effect was significant only in females, in which reproduction seems to exacerbate the cost of defense, while the H obs effect was significant only in males. Despite the lower growth rate of low-H obs trees, their higher CT levels may improve survival, which could account for the deficit of heterozygotes repeatedly found in natural aspen populations.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cole</LastName>
<ForeName>Christopher T</ForeName>
<Initials>CT</Initials>
<Identifier Source="ORCID">0000-0003-1192-6960</Identifier>
<AffiliationInfo>
<Affiliation>Division of Science and Mathematics, University of Minnesota, Morris, 600 E. 4th St., Morris, MN, 56267, USA. colect@morris.umn.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Stevens</LastName>
<ForeName>Michael T</ForeName>
<Initials>MT</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Utah Valley University, Orem, UT, 84058, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Anderson</LastName>
<ForeName>Jon E</ForeName>
<Initials>JE</Initials>
<AffiliationInfo>
<Affiliation>Division of Science and Mathematics, University of Minnesota, Morris, 600 E. 4th St., Morris, MN, 56267, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lindroth</LastName>
<ForeName>Richard L</ForeName>
<Initials>RL</Initials>
<AffiliationInfo>
<Affiliation>Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>02</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Oecologia</MedlineTA>
<NlmUniqueID>0150372</NlmUniqueID>
<ISSNLinking>0029-8549</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D004777" MajorTopicYN="N">Environment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006579" MajorTopicYN="N">Heterozygote</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="Y">Plant Leaves</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Allocation cost</Keyword>
<Keyword MajorTopicYN="Y">Condensed tannin</Keyword>
<Keyword MajorTopicYN="Y">Heterozygote advantage</Keyword>
<Keyword MajorTopicYN="Y">Phenolic glycoside</Keyword>
<Keyword MajorTopicYN="Y">Phenylpropanoid pathway</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>08</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>01</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>2</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>2</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>5</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26886130</ArticleId>
<ArticleId IdType="doi">10.1007/s00442-016-3577-6</ArticleId>
<ArticleId IdType="pii">10.1007/s00442-016-3577-6</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>New Phytol. 2006;172(1):47-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16945088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2011 Sep;72(13):1551-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21354580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2010 Jan;36(1):2-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20054619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2010 Apr;175(4):481-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20170370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2015 Jul;41(7):651-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26099738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2014 Sep;34(9):915-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25261122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2003 Jul;29(7):1565-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12921436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1994 Oct;48(5):1550-1563</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28568412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1997 Jun;111(1):99-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Oct;208(2):410-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25952793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1996 Apr;22(4):765-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24227583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2006 Jun;148(2):293-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16468055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2006 Jul;32(7):1415-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16724272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2014 Sep;34(9):919-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25194142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1988 Mar;75(2):185-189</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28310832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jul;167(1):155-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15948838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2005 Aug;20(8):441-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16701415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2014 May;34(5):471-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24852570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1986 Sep;70(2):238-241</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28311664</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Cole, Christopher T" sort="Cole, Christopher T" uniqKey="Cole C" first="Christopher T" last="Cole">Christopher T. Cole</name>
</noRegion>
<name sortKey="Anderson, Jon E" sort="Anderson, Jon E" uniqKey="Anderson J" first="Jon E" last="Anderson">Jon E. Anderson</name>
<name sortKey="Lindroth, Richard L" sort="Lindroth, Richard L" uniqKey="Lindroth R" first="Richard L" last="Lindroth">Richard L. Lindroth</name>
<name sortKey="Stevens, Michael T" sort="Stevens, Michael T" uniqKey="Stevens M" first="Michael T" last="Stevens">Michael T. Stevens</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001835 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001835 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26886130
   |texte=   Heterozygosity, gender, and the growth-defense trade-off in quaking aspen.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26886130" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020